
ME 6434- Final Project

Solution of a Lid Driven Cavity at RE = 100 and RE = 1000 Using a Staggered Grid and
a Predictor Corrector Method

Kevin Hoopes

May 9, 2012

Kevin Hoopes ME 6434 - Final Project May 9, 2012

Abstract

The lid driven cavity problem on a square domain is solved for RE = 100 and RE = 1000 cases
using a staggered grid and a predictor corrector solution method. Time integration is performed
using the 2nd order Adams-Bashforth integration scheme and the solution is advanced in time
to a steady state for each case. The steady state solution at RE = 100 and RE = 1000 are
found to be in good agreement with the results obtained by Ghia, Ghia, and Shin [1]. For the
RE = 1000 case, the largest permissible time step of ∆t = 0.00581 was found and used for the
computations. This result is compared to the maximum permissible time step for the RE = 100
case.

1 Problem Definition and Setup

The lid driven cavity is a very common test case for validating new CFD codes and techniques
as well as an introduction to CFD programming. Figure 1 shows the geometry and boundary
conditions associated with a lid driven cavity type problem. As can be seen in the figure, the top of

Figure 1: Geometry used in the current study. As the figure indicates, the lid of a square box, LxL
has a positive velocity U , while all the other sides of the box are stationary walls.

the cavity is a moving wall with velocity U . All of the other walls are stationary. The incompressible
Navier Stokes equations were used in order to model the behavior of the fluid flow. In order to solve
for the resulting flow at different lid velocities, the problem is first nondimensionalized in section 2.
A general overview of the solution is presented in section 3. The discritization of the Navier Stokes
equations onto a uniform staggered grid is presented in section 4. Sections 6 and 7 show results for
RE = 100 and RE = 1000 cases.

2 Nondimensionalization of Governing Equations

The x-momentum, y-momentum, and continuity equations are given in equations 1, 2, and 3
respectively.

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂y
(ρuv) = −

∂P

∂x
+

∂

∂x
(µ

∂u

∂x
) +

∂

∂y
(µ

∂u

∂y
) (1)

1

Kevin Hoopes ME 6434 - Final Project May 9, 2012

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρvv) = −

∂P

∂y
+

∂

∂x
(µ

∂v

∂x
) +

∂

∂y
(µ

∂v

∂y
) (2)

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (3)

In order to make these equations easier to discritize and handle through the present solution
technique, they are nondimensionalized.

2.1 Nondimensional Factors

Table 1 contains the chosen dimensions used in the nondimensionalized procedure. The lid ve-
locity was chosen as the characteristic velocity, along with the the side length of the cavity for
the characteristic length. It should be noted that although a reference pressure is used in the
nondimensionalization procedure, throughout the solution it is assumed that it has a value of 0.

Table 1: Dimensional factors used to nondimensionalize the incompressible Navier Stokes equations

Characteristic Dimension Description

U Lid velocity
L Lid side length

Pref Reference pressure

Table 2 shows the nondimensionalized versions of all the variables in equations 1 through 3.

Table 2: Nondimensional groups along with their corresponding dimensional variables

Variable Nondimensional Relationship

u u∗ = u/U
v v∗ = u/U
x x∗ = x/L
y y∗ = y/L
t t∗ = tU/L

P P ∗ =
P−Pref

ρU2

2.2 Nondimensionalization of the Momentum Equation

The nondimensional relationships defined in table 2 were substituted into equation 1 which results
in equation 4.

ρ
∂(u∗U)

∂(t∗L/U)
+ρ

∂(u∗Uu∗U)

∂x∗L
+ρ

∂(u∗Uv∗U)

∂y∗L
= −

∂(P ∗ρU2 + Pref)

∂x∗L
+

∂

∂x∗L
(µ

∂u∗U

∂x∗L
)+

∂

∂y∗L
(µ

∂u∗U

∂y∗L
)

(4)

Next, the entire equation is multiplied by L/(ρU2) and the resulting µ
ρUL

term is collapsed into the
Reynolds number. The resulting equation is shown in equation 5.

∂u∗

∂t∗
+

∂u∗u∗

∂x∗
+

∂u∗v∗

∂y∗
= −

∂P ∗

∂x∗
+

1

RE

[

∂2u∗

∂(x∗)2
+

∂2u∗

∂(y∗)2

]

(5)

2

Kevin Hoopes ME 6434 - Final Project May 9, 2012

Finally, for convenience, the ∗ terms are dropped and equation 6 is the final nondimensional form
of the x-momentum equation.

∂u

∂t
+

∂uu

∂x
+

∂uv

∂y
= −

∂P

∂x
+

1

RE

[

∂2u

∂x2
+

∂2u

∂y2

]

(6)

A similar procedure is applied to the y-momentum equation resulting in equation 7.

∂v

∂t
+

∂uv

∂x
+

∂vv

∂y
= −

∂P

∂y
+

1

RE

[

∂2v

∂x2
+

∂2v

∂y2

]

(7)

2.3 Nondimensionalization of the Continuity Equation

The nondimensional relationships defined in table 2 were substituted into equation 3 which resulted
in equation 8.

∂u∗U

∂x∗L
+

∂v∗U

∂y∗L
= 0 (8)

Next, multiply the whole equation by L/U which results in equation 9.

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (9)

Finally the ∗ designation is dropped for convenience, resulting in the nondimensional form of the
continuity equation, equation 10.

∂u

∂x
+

∂v

∂y
= 0 (10)

3 Overview of solution technique

Now that all the equations have been nondimensionalized, we can turn our attention to actually
solving this system of coupled partial differential equations. The general framework that was used
to solve the equations is enumerated in the following list:

1. Predict x and y velocities at the next time step, designated ũ and ṽ, using a form of the x
and y momentum equations and the 2nd order Adams-Bashforth time integration technique.

2. Form a pressure correction, P ′, using ũ and ṽ that will ensure that the velocity terms at the
next time step will satisfy the continuity equation.

3. Solve for P ′ using an iterative solver.

4. Correct velocity and Pressure using P
′

.

5. Return to step 2.

This technique can be characterized as a two step, explicit, pressure correction technique. First, the
velocity approximated at the next time step, and then this approximation is corrected to reveal the
actual velocity at the next time step. This effectively decouples the continuity and the momentum
equations making the solution much simpler and more rapid.

3

Kevin Hoopes ME 6434 - Final Project May 9, 2012

In order to advance the solution in time, a 2nd order Adams-Bashforth time integration scheme is
used. In general, the scheme integrates a differential equation like the one found in 11.

dφ

dt
= H(φ) (11)

This equation can be integrated to equation 12.

φtn+1 = φtn +

∫ tn+1

tn

H(φ)dt (12)

The 2nd order Adams-Bashforth time integration scheme approximates the integral in 12 using the
current and previous function values to form a linear approximation to the function. The resulting
relationship is shown in equation 13. Note that in this equation, the superscripts denote time steps.

φtn+1 = φtn +∆t

[

3

2
Hn −

1

2
Hn−1

]

(13)

One major advantage of this method is that it is explicit, meaning that the values at the next time
step do not depend on each other, but only on the values at the current and previous time steps.
This makes the actual computation much faster as there are no linear systems to solve; the velocity
at a point is simply an algebraic combination of surrounding velocities and pressures. Also, even
though this method is explicit, it is second order accurate in time.

In order to apply this solution method to the lid driven cavity problem, the momentum equations
must be rearranged to be in the same form as equation 11. This can be seen for the X-momentum
equation in equation 14.

∂u

∂t
= −

∂P

∂x
+

1

RE

[

∂2u

∂x2
+

∂2u

∂y2

]

−
∂uu

∂x
−

∂uv

∂y
(14)

The pressure terms are ignored presently, resulting in equation 15. The motivated reader will notice
that this matches the form needed for the Adams-Bashforth method as defined in 11.

∂u

∂t
= Hx(u, v) =

1

RE

[

∂2u

∂x2
+

∂2u

∂y2

]

−
∂uu

∂x
−

∂uv

∂y
(15)

Note that in its present form, this Hx term is still a continuous equation. In the section 4.1 it will
be discritized on a finite volume grid.

The pressure term is now added back to the formulation resulting in equation 16.

ũ = un +∆t

[

3

2
Hn

x −
1

2
Hn−1

x

]

−∆t
∂Pn

∂x
(16)

True to the general solution steps outlined above, the resulting prediction for the velocity at the
next time step is given the tilde designation. This is done as we know that the predicted velocities
will probably not satisfy continuity.

Ideally we would not need to use an intermediate velocity and could simply move from un directly
to un+1 as shown in equation 17. Note that this equation would only work if we were sure that our
system would satisfy continuity.

4

Kevin Hoopes ME 6434 - Final Project May 9, 2012

un+1 = un +∆t

[

3

2
Hn

x −
1

2
Hn−1

x

]

−∆t
∂Pn

∂x
(17)

By subtracting equation 17 from 16, we arrive at equation 18, which will be termed the X corrector
equation. Basically it gives an expression for un+1 in terms of ũ and a pressure correction term.

un+1 = ũ−∆t
∂(Pn+1 − Pn)

∂x
(18)

To make the notation easier, the relationship for this pressure correction found in equation 19 will
be used.

P
′

= Pn+1 − Pn (19)

Substituting equation 19 into equation 18 we arrive at our final correction equation, equation 20.
The value of P

′

that is used in the corrector equation comes from the discritized continuity equation.
The details of how to obtain this value are contained in section 4.5.

un+1 = ũ−∆t
∂P

′

∂x
(20)

Similarly the v predictor and corrector steps can be written as equations 21 and 22.

ṽ = vn +∆t

[

3

2
Hn

y −
1

2
Hn−1

y

]

−∆t
∂Pn

∂y
(21)

vn+1 = ṽ −∆t
∂P

′

∂y
(22)

In equation 21, Hy is composed of the convection and diffusion terms derived from the discritized
y-momentum equation and P

′

is the same pressure correction seen in equation 20.

In summary, the solution procedure can be outlined as follows. We desire to advance our solution
in time one time step. We first predict what the velocity would be at that next time step assuming
that our equations already satisfy continuity. We then formulate a correction for these intermediate
velocities using the continuity equation. When this correction is applied to both pressure and
velocity, we are now at the next time step. This decouples the momentum and continuity equations,
but it still makes sure that they are both satisfied for each time step.

4 Discritization of governing equations

As we saw in section 3, in order to advance our solution in time we need expressions for the
discritzed momentum and continuity equations. Figure 2 displays the solution domain discritized
into a staggered grid. Each circular node in the figure represents a pressure node, a horizontal arrow
represents a u-velocity node, and a vertical arrow represents a v-velocity node. The small figure
to the right of the grid explains the grid’s staggered nature. The velocities associated with each
pressure node are offset from the pressure node itself even though all of these three components
would have the same i and j indicies.

This type of staggered arrangement is done in order to avoid over interpolation. As will be seen
in the finite volume discritization, often values are needed at the cell faces. This staggered grid

5

Kevin Hoopes ME 6434 - Final Project May 9, 2012

Figure 2: The staggered grid that is applied to the lid driven cavity problem. The solid lines
indicate the boundaries of the solution domain. The figure at the right represents a typical P, u, v
node combination.

arrangement provides a simple way to have these values easily at hand without resorting to inter-
polation of cell face values from far off nodes.

The u-velocity is predicted and corrected at grid points i = 2 → N−1 and j = 1 → N−1. Similarly,
the v-velocity is predicted and corrected at grid points i = 1 → N − 1 and j = 2 → N − 1. The
pressure correction is evaluated at every internal grid point, i = 1 → N − 1 and j = 1 → N − 1.

4.1 X-Momentum

In order to discritize the X-momentum equation, a control volume is drawn around a typical
u-velocity node. This control volume can be seen as the dotted line in figure 3.

Figure 3: The dotted line shows a typical control volume used in the discritization of the X-
momentum equation. The capital letters P,N,E, S,W indicate nodal values while the lower case
letters n, e, s, w represent the cell faces.

6

Kevin Hoopes ME 6434 - Final Project May 9, 2012

The continuous form of the X-momentum equation can be written as equation 23.

∂u

∂t
+

∂uu

∂x
+

∂uv

∂y
= −

∂P

∂x
+

1

RE

[

∂2u

∂x2
+

∂2u

∂y2

]

(23)

Ignoring the pressure terms as stated previously and integrating over the finite volume, we arrive
at equation 24.

∫ e

w

∫ n

s

∂u

∂t
dxdy +

∫ e

w

∫ n

s

∂uu

∂x
dxdy +

∫ e

w

∫ n

s

∂uv

∂y
dxdy =

∫ e

w

∫ n

s

1

RE

[

∂2u

∂x2
+

∂2u

∂y2

]

dxdy (24)

Knowing that ∆ = dyv = dxs the integrals can be evaluated as equation 25.

∂u

∂t
∆2 + (uu|e − uu|w)∆ + (uv|n − uv|s)∆ =

1

RE

[(

∂u

∂x

∣

∣

∣

e
−

∂u

∂x

∣

∣

∣

w

)

∆+

(

∂u

∂y

∣

∣

∣

n
−

∂u

∂y

∣

∣

∣

s

)

∆

]

(25)

Finally, after some algebraic manipulation we arrive at equation 26, which is the discritized form
of the momentum equation that will be needed in the u velocity predictor equation, equation 16.

Hx =
1

∆RE

[(

∂u

∂x

∣

∣

∣

e
−

∂u

∂x

∣

∣

∣

w

)

+

(

∂u

∂y

∣

∣

∣

n
−

∂u

∂y

∣

∣

∣

s

)]

−
(uu|e − uu|w)

∆
−

(uv|n − uv|s)

∆
(26)

Even though this equation is in a discritized form, it is still written in terms of velocities and
derivatives of velocities at the faces of the x-momentum control volume. Table 3 shows how these
terms can be approximated using the velocities of the surrounding nodes.

Table 3: Coefficients used in the calculation of Hx, equation 26

u|n = 1/2(uP + uN) u|e = 1/2(uP + uE) u|s = 1/2(uP + uS) u|w = 1/2(uP + uW)
v|n = 1/2(vNW + vN) v|s = 1/2(vW + vP)

∂u
∂x

|e =
uE−uP

dxu
∂u
∂x

|w = uP−uW

dxu
∂u
∂y
|n = uN−uP

dys
∂u
∂y
|s =

uP−uS

dys

As an example, u is needed at the north face of the x-momentum control volume. This is denoted
u|n in equation 26. In order to express this term as a function of known u-velocities we consult
the diagram of the x-momentum control volume as found in figure 3. u|n can be approximated as
the simple average of uN and uP . The derivatives are evaluated similarly, for example ∂u

∂x
|w can

be evaluated as uP−uW

dxu
. This represents a central difference approximation to the derivative at the

west face of the control volume.

4.2 X-Momentum Boundaries

As stated previously, the u-velocity is predicted and corrected at grid points i = 2 → N − 1 and
j = 1 → N − 1 as shown in figure 2. At i = 2 and i = N − 1 the u-velocity control volume will not
interact with the bounding walls of the domain so no change in the formulation of the Hx term is
needed.

On the other hand, when evaluating Hx at j = 1 and j = N − 1 The walls of the domain will form
the bottom and top of the control volume. This does not effect the formulation of the Hx equation,

7

Kevin Hoopes ME 6434 - Final Project May 9, 2012

equation 26, but it does affect how the velocities and velocity derivatives are computed at the cell
faces. This essentially modifies table 3 for this bounding case.

The key to the required modification is to assume that the values outside of the domain lie on the
walls of the domain. This will ensure that our boundary conditions are enforced as, for example,
there are no u velocity nodes on the top wall of the domain. Without some sort of treatment, it
would be difficult for this wall velocity to affect the flow field.

For example, the u-velocity will be predicted at i = 3, and j = N−1. This will result in the top wall
of the control volume lying along the top wall of the domain. This is easiest to see by examining
figure 3 and imagining that the top of the control volume is also the top of the domain. We will
assume that uN actually lies on the the n face of the control volume, so, we will write u|n = uN
instead of the average of uP and uN as usual. The derivative term, ∂u

∂y
|n will now be formulated

as usual, but we will make sure to specify the distance between uN and uP as 0.5dys instead of
dys to represent that this velocity is now considered to be at the face of the control volume. The
resulting expression can be written as ∂u

∂y
|n = uN−uP

0.5dys
.

Similarly along the bottom wall, when j = 1, u|s = uS and ∂u
∂y
|s =

uP−uS

0.5dys
.

4.3 Y -Momentum

The discritization of the y-momentum equation is very similar to that of the x-momentum equation.
Figure 4 shows a typical control volume for the computation of Hy.

Figure 4: The dotted line shows a typical control volume used in the discritization of the y-
momentum equation. The capital letters P,N,E, S,W indicate nodal values while the lower case
letters n, e, s, w represent cell faces.

Notice that now the control volume is centered at a v-velocity arrow, though the naming conventions
used in the x-momentum control volume are the same.

Following a similar procedure as in section 4.1, an expression for Hy is obtained and is found in
equation 27.

Hy =
1

∆RE

[(

∂v

∂x

∣

∣

∣

e
−

∂v

∂x

∣

∣

∣

w

)

+

(

∂v

∂y

∣

∣

∣

n
−

∂v

∂y

∣

∣

∣

s

)]

−
(uv|e − uv|w)

∆
−

(vv|n − vv|s)

∆
(27)

Table 4 lists the approximations used when evaluating equation 27. These approximations are

8

Kevin Hoopes ME 6434 - Final Project May 9, 2012

formulated using the same logic that table 3 was formulated.

Table 4: Coefficients used in the calculation of Hy, equation 27

v|n = 1/2(vP + vN) v|e = 1/2(vP + vE) v|v = 1/2(vP + vS) v|w = 1/2(vP + vW)
u|e = 1/2(vSE + uE) u|w = 1/2(uS + uP)

∂v
∂x

|e =
vE−vP
dxu

∂v
∂x

|w = vP−vW
dxu

∂v
∂y
|n = vN−vP

dys
∂v
∂y
|s =

vP−vS
dys

4.4 Y-Momentum Boundaries

Similar to the x-momentum equation, special treatment is needed at some of the extrema of the
Hy calculation. When j = 2 and j = N − 1 no special treatment is needed as the boundaries of the
resulting control volume will not intersect the boundaries of the domain. On the other hand, when
i = 1 and i = N − 1 the boundaries of the control volume will intersect the walls of the system and
modifications to the approximations found in table 4 must be made.

The same general rule is used as when modifying the x-momentum equations. The nodes beyond
the walls are assumed to lie on the walls themselves when formulating the approximations.

When i = 1 then u|w = uW and ∂v
∂x

|w = vP−vW
0.5dxu

Similarly when i = N − 1 then u|e = uE and
∂v
∂x

|e =
vE−vP
0.5dxu

4.5 Continuity and Pressure corrections

The idea behind the pressure correction step is to form a correction such that it can be used to
modify the ũ and ṽ terms such that they will satisfy continuity.

With this in mind, first substitute un+1 from equation 20 and vn+1 from equation 22 into the
general form of the continuity equation, equation 10, as u and include v to get 28.

∂

∂x

[

ũ−∆t
∂P

′

∂x

]

+
∂

∂y

[

ṽ −∆t
∂P

′

∂y

]

= 0 (28)

After some algebraic manipulation this can be written as equation 29, which is the general, contin-
uous form of our pressure correction equation.

∂2P
′

∂x2
+

∂2P
′

∂y2
=

1

∆t

[

∂ũ

∂x
+

∂ũ

∂y

]

(29)

We then discritize our domain as shown in figure 5. This is similar to the approach used in the x
and y momentum equations except now the pressure node is at the center of the control volume.

Then integrate over the control volume as shown in equation 30.

∫ e

w

∫ n

s

∂2P
′

∂x2
dxdy +

∫ e

w

∫ n

s

∂2P
′

∂y2
dxdy =

∫ e

w

∫ n

s

1

∆t

[

∂ũ

∂x
+

∂ũ

∂y

]

dxdy (30)

Evaluate these integrals at the cell faces to obtain equation 31.

[

∂P
′

∂x

∣

∣

∣

e
−

∂P
′

∂x

∣

∣

∣

w

]

dys+

[

∂P
′

∂y

∣

∣

∣

n
−

∂P
′

∂y

∣

∣

∣

s

]

dxs =
1

∆t

[

(ũ|e − ũ|w)dys+ (ṽ|n − ṽ|s)dxs
]

(31)

9

Kevin Hoopes ME 6434 - Final Project May 9, 2012

Figure 5: The dotted line shows a typical control volume used in the discritization of the pressure
correction equation. The capital letters P,N,E, S,W indicate nodal values while the lower case
letters n, e, s, w represent cell faces.

Table 5 shows the approximations used for the derivatives of pressure found in equation 31. Since
the velocities used in this equation are simply the velocities at the cell faces, which our staggered
grid already has, no approximations are needed for these velocities.

Table 5: Coefficients used in the calculation of the discrete pressure equation, equation 31

∂P
′

∂x

∣

∣

∣

e
=

P
′

E−P
′

P

dxs
∂P

′

∂x

∣

∣

∣

w
=

P
′

P−P
′

W

dxs
∂P

′

∂y

∣

∣

∣

n
=

P
′

N−P
′

P

dys
∂P

′

∂y

∣

∣

∣

s
=

P
′

P−P
′

S

dys

ũ|e = uE ũ|w = uP ṽ|n = vN ṽ|s = vP

Substitute the approximations from table 5 into equation 31 and, after some algebraic manipulation
and knowing our grid is uniform, i.e. dxs = dyv = ∆, arrive at the discritized form of the pressure
equation 32.

4P
′

P − P
′

E − P
′

W − P
′

N − P
′

S = −
∆

∆t

[

ũ|E − ũ|P + ṽ|N − ṽ|P

]

(32)

Unlike the calculation of Hy and Hx the calculation of P
′

at each node will result in a pentadiagonal
system of linear equations.

4.6 Pressure Boundaries

The boundary conditions used for the pressure correction equation are simply that the derivative
of pressure normal to a wall is zero at the wall. For example, when computing the pressure at

the i = 1 and j = 3 node, ∂P
′

∂x
|w is zero. After setting this value to zero in equation 31 and some

algebraic reduction, we are left with equation 33, which is a general expression for all nodes along
the west wall.

3P
′

P − P
′

E − P
′

N − P
′

S = −
∆

∆t

[

ũ|E − ũ|P + ṽ|N − ṽ|P

]

(33)

This same procedure can be generalized to all the walls in the domain. Corners will also be treated
in the same fashion, for example, at i = 1 and j = 1 both the south and west walls of the domain

are in line with the south and west walls of the control volume. This means that both ∂P
′

∂x
|w and

10

Kevin Hoopes ME 6434 - Final Project May 9, 2012

∂P
′

∂y
|s will be zero. After setting these values to zero in equation 31 and some algebraic reduction,

we are left with equation 34.

2P
′

P − P
′

E − P
′

N = −
∆

∆t

[

ũ|E − ũ|P + ṽ|N − ṽ|P

]

(34)

A similar procedure is used for all the boundaries and corners of the domain.

5 Description of solver

Following the general solution technique as outlined in section 3, a computer program was written
to solve the lid driven cavity problem. The code was writen in functional C++ using the Microsoft
Visual Studio 2010 integrated developer environment and compiler. The code uses a Gauss Seidel
scheme to solve the pressure correction equation until the average L2 norm of the residual falls
below 1E-5. The solution is integrated in time from rest until the L2 norm of the change in u and
v velocities both falls below 1E-8. Solutions were computed at RE = 100 for various grid levels
and time steps as contained in table 6.

Table 6: RE = 100 Cases computed when solving the lid driven cavity problem.

N = 32 ∆t =3.125E-3 ∆t =6.25E-3 ∆t =0.0125
N = 64 ∆t =5.0E-4 ∆t =1.0E-3 ∆t =3.0E-3
N = 128 ∆t =1.25E-4 ∆t =2.5E-4 ∆t =5.0E-4

A solution was also computed for RE = 1000. For this case, the largest permissible time step was
found and used to obtain convergence. The results for all of these cases are found in sections 6 and
7.

The complete source code for the computer program is found in Appendix A.

6 Results for RE=100

Figure 6 displays steady state u and v velocity contours solved for using the present computer
program. These contours where made using the finest grid and time step from table 6

Figure 7 shows a vector plot of the steady state solution.

Figure 8 displays semi-logarithmic plots for the average L2 norm of the u-velocity residual plotted
against non-dimensional time, t∗.

6.1 Trends in Convergence

By examining figure 8 several important trends appear. It is interesting that all the given time
steps converge except the ∆t = 0.0125 case for the N = 32 grid which diverges. In general, as the
time step decreases, the nondimensional time to convergence goes down as well. To compare the
effect of grid size, the ∆t =5E-4 line from figure 8(b) can be compared to the ∆t =5E-4 line from
figure 8(c). Both of these cases converge in the same nondimensional time even though they use
different grids.

11

Kevin Hoopes ME 6434 - Final Project May 9, 2012

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u−
ve

lo
ci

ty

−0.2

0

0.2

0.4

0.6

0.8

(a) u-Velocity

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v−
ve

lo
ci

ty

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) v-Velocity

Figure 6: Steady state contours of velocity for the RE = 100 case. These contours where made
using the finest grid and time step from table 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 7: Vectors of velocity for the RE = 100 case. Note that these vectors are not plotted to
scale. In reality the velocity near the bottom corner has a magnitude much lower than that in the
center of the flow field. These vectors where made using the finest grid and time step from table 6
skipping every other velocity node.

12

Kevin Hoopes ME 6434 - Final Project May 9, 2012

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

u−
V

el
oc

ity
 R

es
id

ua
l

Non−Dimensional Time

∆ t=0.0125
∆ t=6.25E−3
∆ t=3.125E−3

(a) N = 32

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

u−
V

el
oc

ity
 R

es
id

ua
l

Non−Dimensional Time

∆ t=3.0E−3
∆ t=1.0E−3
∆ t=5.0E−4

(b) N = 64

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Non−Dimensional Time

u−
V

el
oc

ity
 R

es
id

ua
l

∆ t=5.0E−4
∆ t=2.5E−4
∆ t=1.25E−4

(c) N = 128

Figure 8: L2 norm of the u-velocity residual for the RE = 100 cases.

13

Kevin Hoopes ME 6434 - Final Project May 9, 2012

6.2 Validation

In order to validate the solution, it was compared against the solution obtain by Ghia,Ghia, and
Shin[1]. Figure 9 shows the comparison of these results with the results of the present study.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y−coordinate

u−
ve

lo
ci

ty

Ghia et al.
Computed Solution N=32
Computed Solution N=64
Computed Solution N=128

(a) u-Velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x−coordinate

v−
ve

lo
ci

ty

Ghia et al.
Computed Solution N=32
Computed Solution N=64
Computed Solution N=128

(b) v-Velocity

Figure 9: Comparison of u and v velocity to results found in [1, p 398-399]

As the grid resolution increases, the results from the present study approach those from Ghia,
Ghia, and Shin. It should be noted that in their study, they also used RE = 100 and for all their
computations they used N = 128.

6.3 Compute time

Table 7 shows the CPU time to convergence, the total number of time steps to convergence, as well
as the total number of iterations used to solve the pressure correction equation for all the grid sizes
and time steps found in table 6.

Table 7: CPU time, total time steps to convergence, and total number of pressure correction
iterations performed for the RE = 100 cases. ∗ this case did not converge

N = 32 ∆t =3.125E-3 ∆t =6.25E-3 ∆t =0.0125

CPU time to convergence 2.97s 2.48s ∗

Time steps 5,892 3,155 ∗

Pressure corrector iterations 19,937 16,568 ∗

N = 64 ∆t =5.0E-4 ∆t =1.0E-3 ∆t =3.0E-3

CPU time to convergence 45.09s 29.28s 15.63s
Time steps 29,993 16,280 6,111

Pressure corrector iterations 54,737 47,639 36,124

N = 128 ∆t =1.25E-4 ∆t =2.5E-4 ∆t =5.0E-4

CPU time to convergence 550.80s 348.54s 233.48s
Time steps 99,469 54,857 29,993

Pressure corrector iterations 134,039 118,441 101,987

The general trend is that as grid size increases, the CPU time to steady state increases very rapidly.
The N = 32 cases converged on the order of 2 seconds on an Intel Core i5−2500k quad core desktop

14

Kevin Hoopes ME 6434 - Final Project May 9, 2012

computer. The N = 128 cases took over 100 times as long to converge on the same computer. Also
as time step decreased, CPU time increased dramatically. For the N = 128 case the largest time
step took 233.48 while the finest time step took 550.80 to converge to steady state.

This can be explained as we examine the actual number of time steps being taken for each case.
For the N = 128 grid and fine time step case, the solution takes 99, 496 time steps while for the
coarse time step case it only takes 29, 993 steps. The finer case takes three times as many time
iterations to reach a steady state. In this regard the nondimensional time is somewhat deceiving.
Even though the finer case takes less nondimensional time to reach convergence, in order to do so
it takes more time steps and more actual CPU time. The number of time steps are what counts
when measuring CPU time as that will give insight as to how many computations were actually
performed.

Another interesting comparison can be made when looking at the number of total pressure correc-
tion steps that are taken for each time step. It is interesting to note that the finer time step cases
take more total pressure correction iterations. This should come as no surprise as we have already
seen that they take more total time steps to converge. By comparing the total number of iterations
done with the total number of time steps needed to reach convergence, we can see that even though
finer time steps take more pressure iterations in total, they take fewer pressure iterations per time
step.

We can conclude from this that at a finer time step the pressure correction is easier to solve. On the
other hand, a finer time step means that the solution is advancing in time at a slower pace which
translates to more total calculations and thus a longer CPU time to convergence. Also a time step
that is too coarse can lead to divergence as was seen in the coarsest time step on the N = 32 grid.

7 Results for RE=1000

The solution was also solved on an N = 128 grid for RE = 1000. Figure 10 shows contours of u
and v velocities for the RE = 1000 case.

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u−
ve

lo
ci

ty

−0.2

0

0.2

0.4

0.6

0.8

(a) u-Velocity

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v−
ve

lo
ci

ty

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) v-Velocity

Figure 10: Contours of velocity at steady state for the RE = 1000 case.

Figure 11 shows vectors of velocity for the RE = 1000 case.

15

Kevin Hoopes ME 6434 - Final Project May 9, 2012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 11: Vectors of velocity for the RE = 1000 case. Note that these vectors are not plotted to
scale. In reality the velocity near the bottom corners has a magnitude much lower than that in the
center of the flow field.

7.1 Validation

In order to validate the solution, it was once again compared to the values obtained by Ghia, Ghia,
and Shin [1]. Figure 12 shows a graphical comparison of the two sets of data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y−coordinate

u−
ve

lo
ci

ty

Ghia et al.
Computed Solution

(a) u-velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x−coordinate

v−
ve

lo
ci

ty

Ghia et al.
Computed Solution

(b) v-velocity

Figure 12: Comparison of u and v velocity to results found in [1, p 398-399]

As can be seen in the figure, the computed solution matches the comparison data very well.

16

Kevin Hoopes ME 6434 - Final Project May 9, 2012

7.2 Maximum Permissible Time Step

A simple iterative technique was used in order to find the maximum permissible time step for the
N = 128 and RE = 1000 case. The time step was incrementally increased until a divergence was
detected. It was found that the maximum allowable time step was ∆t = 0.00581. Figure 13 shows
the L2 norm of the residual as a function of nondimensional time for three different cases. One for
a time step slightly higher than the maximum, and one well above the maximum.

0 20 40 60 80 100 120
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Non−Dimensional Time

u−
V

el
oc

ity
 R

es
id

ua
l

∆ t=5.81E−3

(a) ∆t = 0.00581

0 20 40 60 80 100 120 140 160
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Non−Dimensional Time

u−
V

el
oc

ity
 R

es
id

ua
l

∆ t=5.812E−3

(b) ∆t = 0.005811

0 50 100 150
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Non−Dimensional Time

u−
V

el
oc

ity
 R

es
id

ua
l

∆ t=5.89E−3

(c) ∆t = 0.0059

Figure 13: L2 norm of the u-velocity residual for the RE = 1000 case at three different time step
levels.

As can be seen in figure 13(a), the solution for ∆t = 0.00581 smoothly converges to steady state.
Once the time step is increased only slightly, the solution becomes unstable. This can be seen for
∆t = 0.005811 in figure 13(b). At ∆t = 0.0059, as shown figure 13(c) the solution becomes wildly
unstable.

17

Kevin Hoopes ME 6434 - Final Project May 9, 2012

7.3 Comparison to RE = 100

A similar procedure was carried out for the RE = 100 case and a maximum permissible time step
was found to be ∆t = 0.000731. It is interesting that the maximum allowable time step increases
with increasing RE. The fundamental difference between the two cases is that in the RE = 100
case, the viscous forces on the fluid are much greater than the inertial forces on the fluid. The
opposite is true for the RE = 1000 case. This is because the Reynold’s number is the ratio of
inertial to viscous forces.

With this in mind, we can examine the stability further by computing the CFL number and the
Von Neumann stability number, r, using equations 35 and 36.

CFL =
u∆t

∆x
(35)

r =
µ∆t

∆x2
(36)

In equation 35 a u of 1, consistent with our nondimensionalization, was used. In equation 36 a µ
is derived from the Reynolds number at each case. In both equations, the maximum permissible
time step found previously was used as ∆t. Table 8 shows the results of computing both the CFL
number and the Von Neumann stability number, r, for both RE cases as well as the nondimensional
time to convergence.

Table 8: CFL, Von Nueman stability conditions, and non dimensional time to convergence for
RE = 100 and RE = 1000 cases using their computed maximum permissible timestep.

RE CFL r Non dimensional time to convergence

100 0.0977 0.1250 15.78
1000 0.7437 0.0952 104.02

It is clear from the table that at RE = 100, r is much closer to its critical value, 1/2, than the CFL
number is to its critical value, 1. The opposite is true for the RE = 1000 case. Since the RE = 100
case is more viscous dominated it is more controlled by the Von Nueman stability condition. As the
RE = 1000 is more convection dominated, it is more controlled by the CFL number. The reason
that we are not seeing either the CFL number or the Von Nueman stability number approach its
critical value is that, in reality, both cases are dominated by both conditions.

Another interesting comparison is the different nondimensional time that each case takes to reach
convergence. From the table, the RE = 1000 case takes roughly 6 times as long to converge as the
RE = 100 case. This is due to the decreased level of viscous damping in the RE = 1000 case. This
can be seen visually by comparing the velocity vectors from the RE = 1000 case, figure 11, with
velocity vectors from the RE = 100 case, figure 7. In the RE = 1000 case, the flow structures are
much larger and more complicated which will cause the solution to converge slower.

8 Potential Speed Improvements

The code in the present study was developed for instructional purposes only. It was not optimized
in any way. Apart from obvious code and compiler optimization or potential parallelization, some
algorithmic changes could be made to potentially decrease the time to solution.

One thing that could be done to greatly increase the speed of the pressure corrector calculation

18

Kevin Hoopes ME 6434 - Final Project May 9, 2012

would be to implement a multigrid framework. Hoopes, in his study of the application of the
multigrid framework to the 2D Poisson equation, found a speed improvement of almost two times
with only one level of multigrid[2, p 2]. If multiple levels of multigrid were applied, even more
speedup would be anticipated.

Other changes that could be implemented would be to use an implicit time integration scheme.
This could possibly decrease total time to solution as it would allow a larger time step to be taken.
Care would have to be taken to ensure that the extra computation involved in an implicit time
integration scheme would not offset the gains produced by increasing the time step.

Another improvement would be replacing the Guass Sidel solver that was used for the pressure
corrector equation with a different, possibly faster, method. The Alternating Direction Implicit
method could be implemented, it uses a tridiagonal solver which, if properly optimized, offers
potential speed benefits.

9 Conclusion

The lid driven cavity problem on a square domain was solved for RE = 100 and RE = 1000 cases
using a staggered grid and an predictor corrector solution method. The steady state solution at
RE = 100 and RE = 1000 was compared to the results obtained by Ghia, Ghia, and Shin[1] and the
results were found to be in good agreement. For the RE = 1000 case, the largest permissible time
step of ∆t = 0.00581 was found. Some conclusions were drawn about the stability of the solution
by comparing the maximum permissible time step for the RE = 100 case and the RE = 1000 case.
It was found that the lower RE value is more strictly controlled by viscous terms and thus the Von
Neumann stability condition while the high RE case is more dominated by the CFL condition.

19

Kevin Hoopes ME 6434 - Final Project May 9, 2012

References

[1] Ghia, Ghia, and Shin, High-Re solutions for incompressible flow using the Navier-Stokes equa-
tions and a multigrid method. Journal of Computational Physics, Vol. 48, pp. 387-411, 1982.

[2] Hoopes, Kevin, CFD HW 6: Multigrid framework applied to the 2D Poisson equation. 2012.

20

Kevin Hoopes ME 6434 - Final Project May 9, 2012

Appendix A - Code

#inc lude <vector>
#inc lude <iostream>

#inc lude <fstream>

#inc lude <s t r ing>
#inc lude <sstream>

#inc lude <math . h>

us ing std : : v ec tor ;
us ing namespace std ;
i n t dimension ;
double d e l t a ;
double RE;
double d e l t a t ;
i n t w r i t e i n t e r v a l ;
i n t r e p o r t i n t e r v a l ;

i n t p r in t 2d (vector<vector<double> > array2D , i n t dimension , s t r i n g f i l ename) {
ofst ream o u t f i l e ;
o u t f i l e . open (f i l ename) ;

f o r (i n t j =0; j<dimension ; j++){

f o r (i n t i =0; i<dimension ; i++) {
o u t f i l e << array2D [i] [j] << ” ” ;

}
o u t f i l e << end l ;

}
o u t f i l e . c l o s e () ;

r e tu rn 1 ;
}

i n t c l e a r a r r a y (vector<vector<double> > &array2d) {
f o r (i n t i = 0 ; i < dimension ; i++) {

f o r (i n t j =0; j < dimension ; j++) {
array2d [i] [j] = 0 ;

}
}
r e tu rn 1 ;

}

double ca l cH i x (vector<vector<double> > &u , vector<vector<double> > &v , i n t i , i n t j
) {

double u e , u w , u n , v n , u s , v s ;
double dudx e , dudx w , dudy n , dudy s ;

double Hi ;

// s e t volume s i d e l ength s
double dyv , dxs ;

dyv = de l t a ;

Kevin Hoopes ME 6434 - Final Project May 9, 2012

dxs = de l t a ;

// s e t neighborhood
in t P i , P j , N i , N j , E i , E j , S i , S j ,W i ,W j ;
P i = i ;
P j = j ;
N i = i ;
N j = j +1;
E i = i +1;
E j = j ;
S i = i ;
S j = j −1;
W i = i −1;
W j = j ;

// s e t extendened neighborood
in t NW i ,NW j ;
NW i = i −1;
NW j = j +1;

// s e t d e f au l t va lue s to c a l c u l a t e Hi and Hi o ld

// f a c e v e l
u n = 0 . 5* (u [N i] [N j]+u [P i] [P j]) ;
u e = 0 . 5* (u [E i] [E j]+u [P i] [P j]) ;
u s = 0 . 5* (u [S i] [S j]+u [P i] [P j]) ;
u w = 0 .5* (u [W i] [W j]+u [P i] [P j]) ;

v n = 0 . 5* (v [NW i] [NW j]+v [N i] [N j]) ;
v s = 0 . 5* (v [W i] [W j]+v [P i] [P j]) ;

// f a c e der iv
dudy n = 1.0/ d e l t a *(u [N i] [N j]−u [P i] [P j]) ;
dudx e = 1.0/ d e l t a *(u [E i] [E j]−u [P i] [P j]) ;
dudy s = 1 .0/ d e l t a *(u [P i] [P j]−u [S i] [S j]) ;
dudx w = 1.0/ d e l t a *(u [P i] [P j]−u [W i] [W j]) ;

// s e t boundary s p e c i f i c va lue s

// l e f t
i f (i == 2) {

// cout << u [W i] [W j] << end l ;

}

// r i gh t
i f (i == dimension −2) {
}

//bottom
i f (j == 1) {

u s = u [S i] [S j] ;
u s = 0 ;
dudy s = 1 . 0/ (0 . 5* de l t a) *(u [P i] [P j]−u [S i] [S j]) ;

}

Kevin Hoopes ME 6434 - Final Project May 9, 2012

// top
i f (j == dimension−2){

u n = 1 ;
dudy n = 1 . 0/ (0 . 5* de l t a) *(u n−u [P i] [P j]) ;

}

// c a l c u l a t e Hi
Hi = 1 .0/RE* ((dudx e − dudx w) *dyv + (dudy n − dudy s) *dxs) − (u e *u e − u w*u w) *dyv − (u n*v n − u s * v s) *dxs ;
r e tu rn Hi ;

}

double ca l cH i y (vector<vector<double> > &u , vector<vector<double> > &v , i n t i , i n t j
) {

double v n , v e , v s , v w , u e , u w ;
double dvdx e , dvdx w , dvdy n , dvdy s ;

double Hi ;

// s e t volume s i d e l ength s
double dyv , dxs ;

dyv = de l t a ;
dxs = de l t a ;

// s e t neighborhood
in t P i , P j , N i , N j , E i , E j , S i , S j ,W i ,W j ;
P i = i ;
P j = j ;
N i = i ;
N j = j +1;
E i = i +1;
E j = j ;
S i = i ;
S j = j −1;
W i = i −1;
W j = j ;

// s e t extendened neighborood
in t SE i , SE j ;
SE i = i +1;
SE j = j −1;

// s e t d e f au l t va lue s to c a l c u l a t e Hi and Hi o ld

// f a c e v e l
v n = 0 . 5* (v [N i] [N j]+v [P i] [P j]) ;
v e = 0 . 5* (v [E i] [E j]+v [P i] [P j]) ;
v s = 0 . 5* (v [S i] [S j]+v [P i] [P j]) ;
v w = 0 .5* (v [W i] [W j]+v [P i] [P j]) ;

u e = 0 . 5* (u [SE i] [SE j]+u [E i] [E j]) ;

Kevin Hoopes ME 6434 - Final Project May 9, 2012

u w = 0 .5* (u [S i] [S j]+u [P i] [P j]) ;

// f a c e der iv
dvdy n = 1.0/ d e l t a *(v [N i] [N j]−v [P i] [P j]) ;
dvdx e = 1.0/ d e l t a *(v [E i] [E j]−v [P i] [P j]) ;
dvdy s = 1 .0/ d e l t a *(v [P i] [P j]−v [S i] [S j]) ;
dvdx w = 1.0/ d e l t a *(v [P i] [P j]−v [W i] [W j]) ;

// s e t boundary s p e c i f i c va lue s

// l e f t
i f (i == 1) {

v w = v [W i] [W j] ;

dvdx w = 1 .0/ (0 . 5* de l t a) *(v [P i] [P j]−v [W i] [W j]) ;

}

// r i gh t
i f (i == dimension −2) {

v e = v [E i] [E j] ;

dvdx e = 1 . 0/ (0 . 5* de l t a) *(v e − v [P i] [P j]) ;

}

//bottom
i f (j == 2) {

}

// top
i f (j == dimension−2){
}

// c a l c u l a t e Hi
Hi = 1 .0/RE* ((dvdx e − dvdx w) *dyv + (dvdy n − dvdy s) *dxs) − (u e * v e − u w*v w) *dyv − (v n *v n − v s * v s) *dxs ;
r e tu rn Hi ;

}

double calcPgradx (vector<vector<double> > &P, in t i , i n t j) {

double GP;

GP = 1.0/ d e l t a *(P[i] [j] − P[i −1] [j]) ;

r e tu rn GP;

}

double calcPgrady (vector<vector<double> > &P, in t i , i n t j) {

double GP;

Kevin Hoopes ME 6434 - Final Project May 9, 2012

GP = 1.0/ d e l t a *(P[i] [j]−P[i] [j −1]) ;

r e tu rn GP;

}
i n t main (i n t argc , const char* argv []) {

i f (argc != 6) {
cout << ”You had ” << argc−1 << ” Arguments ” << ”You needed ” <<

6−1 << end l ;
r e tu rn 0 ;

}
dimension = ato i (argv [1]) ;
d e l t a t = at o f (argv [2]) ;
RE = ato f (argv [3]) ;
r e p o r t i n t e r v a l = at o i (argv [4]) ;
w r i t e i n t e r v a l = at o i (argv [5]) ;

// dimension = 33 ;
// d e l t a t = .003125 ;
// w r i t e i n t e r v a l = 1000;
//RE = 100 . 0 ;

cout << end l << ”Lid dr iven cav i ty s o l v e r − Kevin Hoopes May 2012” << end l
<< end l ;

cout << ”Dimension : ” << dimension << end l ;
cout << ”Delta t : ” << d e l t a t << end l ;
cout << ”RE:” << RE << end l ;
cout << ”Report i n t e r v a l : ” << r e p o r t i n t e r v a l << end l ;
cout << ”Write i n t e r v a l : ” << wr i t e i n t e r v a l << end l ;
cout << end l << ”Begining time i t e g r a t i o n to steady s t a t e ” << end l ;

// ad ju s t dimension
dimension = dimension + 2 ;
// cout << dimension ;

i f (w r i t e i n t e r v a l == 0) {
wr i t e i n t e r v a l = 1e9 ;

}

i f (r e p o r t i n t e r v a l == 0) {
r e p o r t i n t e r v a l = 1e9 ;

}

// s t a r t L2 wr i t e r
ofst ream L2 f i l e ;
s t r ings t r eam L2f i lename ;
L2f i l ename << ” r e s u l t s / L2error−” << dimension − 2 << ”−” << d e l t a t << ”−”

<< RE << ” . txt ” ;
L 2 f i l e . open (L2f i l ename . s t r ()) ;

d e l t a = 1 . 0/ (dimension−2) ;

// c r e a t e ar ray s to hold our in fo rmat ion

Kevin Hoopes ME 6434 - Final Project May 9, 2012

//u−v e l
vector<vector<double> > u ;
u . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

u [i] . r e s i z e (dimension) ;
}

vector<vector<double> > ustar ;
u s tar . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

ustar [i] . r e s i z e (dimension) ;
}

vector<vector<double> > u o ld ;
u o ld . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

u o ld [i] . r e s i z e (dimension) ;
}

//v−v e l
vector<vector<double> > v ;
v . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

v [i] . r e s i z e (dimension) ;
}

vector<vector<double> > vstar ;
v s tar . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

vstar [i] . r e s i z e (dimension) ;
}

vector<vector<double> > v o ld ;
v o ld . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

v o ld [i] . r e s i z e (dimension) ;
}

// Pressure
vector<vector<double> > P;
P. r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

P[i] . r e s i z e (dimension) ;
}

vector<vector<double> > Pprime ;
Pprime . r e s i z e (dimension) ;
f o r (i n t i = 0 ; i < dimension ; i++) {

Pprime [i] . r e s i z e (dimension) ;
}

// s e t i n i t i a l c ond i t i on s
c l e a r a r r a y (u) ;

// s e t top v e l o c i t y
f o r (i n t i =0; i<dimension ; i++){

f o r (i n t j =0; j<dimension ; j++){

Kevin Hoopes ME 6434 - Final Project May 9, 2012

i f (j == dimension − 1 && i !=0 && i !=dimension−1) {
u [i] [j] = 1 ;

}

}
}

c l e a r a r r a y (u o ld) ;
c l e a r a r r a y (u s tar) ;

c l e a r a r r a y (v) ;
c l e a r a r r a y (v o ld) ;
c l e a r a r r a y (v s tar) ;

c l e a r a r r a y (P) ;
c l e a r a r r a y (Pprime) ;

// s t a r t time i n t e g r a t i o n loop
f o r (i n t m=1; m < 2e11 ; m++) {

// c l e a r a l l arrays , s e t a l l va lue s to ze ro f o r in t e rmed iat e th ings .
c l e a r a r r a y (u s tar) ;
c l e a r a r r a y (v s tar) ;
c l e a r a r r a y (Pprime) ;
// p r ed i c t u and v

// p r ed i c t u
f o r (i n t i =2; i <= dimension −2; i++){

f o r (i n t j =1; j <= dimension −2; j++){

double Hi , H i o ld ;
double GP;

// setup v a r i a b l e s f o r u s tar computation
Hi = ca l cH i x (u , v , i , j) ;

// c a l c u l a t e H i o ld cou ld a l s o j u s t remember
i t

H i o ld = ca l cH i x (u old , v o ld , i , j) ;

// c a l c u l a t e GP
GP = calcPgradx (P, i , j) ;

// p r ed i c t u
i f (m == 1) {

ustar [i] [j] = u [i] [j] + d e l t a t /pow(
de lta , 2 . 0) *Hi − d e l t a t *GP;

} e l s e {
ustar [i] [j] = u [i] [j] + d e l t a t /pow(

de lta , 2 . 0) * (1 .5*Hi − 0 .5* Hi o ld)
− d e l t a t *GP;

}

}
}

Kevin Hoopes ME 6434 - Final Project May 9, 2012

// p r ed i c t v
f o r (i n t i =1; i <= dimension −2; i++){

f o r (i n t j =2; j <= dimension −2; j++){

double Hi , H i o ld ;
double GP;

// setup v a r i a b l e s f o r u s tar computation
Hi = ca l cH i y (u , v , i , j) ;

// c a l c u l a t e H i o ld cou ld a l s o j u s t remember
i t

H i o ld = ca l cH i y (u old , v o ld , i , j) ;

// c a l c u l a t e GP
GP = calcPgrady (P, i , j) ;

// p r ed i c t v
i f (m ==1) {

vstar [i] [j] = v [i] [j] + d e l t a t /pow(
de lta , 2 . 0) *Hi − d e l t a t *GP;

} e l s e {
vstar [i] [j] = v [i] [j] + d e l t a t /pow(

de lta , 2 . 0) * (1 .5*Hi − 0 .5* Hi o ld)
− d e l t a t *GP;

}
}

}

// pr in t 2d (vstar , dimension , ” v s t a r j a c ob ou t . txt ”) ;

// s o l v e f o r a p re s su re c o r r e c t i o n u n t i l L2 e r r o r norm < 1e−5
in t p r e s s u r e i t e r a t i o n s = 0 ;
f o r (i n t n=0; n< 1000000; n++) {

f o r (i n t j =1; j <= dimension −2; j++){
f o r (i n t i =1; i <= dimension −2; i++) {

double Pprime N , Pprime E , Pprime S ,
Pprime W ;

double AP,AN,AE,AS,AW;
double u s tar e , ustar w ;
double vstar n , v s t a r s ;

// s e t neighborhood
in t P i , P j , N i , N j , E i , E j , S i , S j ,

W i ,W j ;
P i = i ;
P j = j ;
N i = i ;
N j = j +1;
E i = i +1;
E j = j ;
S i = i ;
S j = j −1;
W i = i −1;
W j = j ;

Kevin Hoopes ME 6434 - Final Project May 9, 2012

// s e t d e f au l t va lue s ;

Pprime N = Pprime [N i] [N j] ;
Pprime E = Pprime [E i] [E j] ;
Pprime S = Pprime [S i] [S j] ;
Pprime W = Pprime [W i] [W j] ;

AP = 4 . 0 ;
AN = 1 . 0 ;
AE = 1 . 0 ;
AS = 1 . 0 ;
AW = 1 . 0 ;

u s t a r e = ustar [i +1] [j] ;
u star w = ustar [i] [j] ;

v s ta r n = vstar [i] [j +1] ;
v s t a r s = vstar [i] [j] ;

i f (i == 1) {
AP = AP−1;
AW = 0 ;

}

i f (i == dimension − 2) {
AP = AP−1;
AE = 0 ;

}
i f (j == 1) {

AP = AP−1;
AS = 0 ;

}
i f (j == dimension − 2) {

AP = AP−1;
AN = 0 ;

}

//now assemble our equat ion
double LHS = AN*Pprime N + AE*

Pprime E + AS*Pprime S + AW*
Pprime W ;

double RHS = −de l t a / d e l t a t * ((
u s tar e−ustar w) + (vstar n−
v s t a r s)) ;

Pprime [P i] [P j] = 1 .0/AP*(LHS + RHS
) ;

}
}

// c a l c u l a t e rho the e r r o r

Kevin Hoopes ME 6434 - Final Project May 9, 2012

double Prho sum = 0 ;
f o r (i n t j =1; j <= dimension −2; j++){

f o r (i n t i =1; i <= dimension − 2 ; i++) {

double Pprime P , Pprime N , Pprime E ,
Pprime S , Pprime W ;

double AP,AN,AE,AS,AW;
double u s tar e , ustar w ;
double vstar n , v s t a r s ;

// s e t neighborhood
in t P i , P j , N i , N j , E i , E j , S i , S j ,

W i ,W j ;
P i = i ;
P j = j ;
N i = i ;
N j = j +1;
E i = i +1;
E j = j ;
S i = i ;
S j = j −1;
W i = i −1;
W j = j ;

// s e t d e f au l t va lue s ;

Pprime P = Pprime [P i] [P j] ;
Pprime N = Pprime [N i] [N j] ;
Pprime E = Pprime [E i] [E j] ;
Pprime S = Pprime [S i] [S j] ;
Pprime W = Pprime [W i] [W j] ;

AP = 4 . 0 ;
AN = 1 . 0 ;
AE = 1 . 0 ;
AS = 1 . 0 ;
AW = 1 . 0 ;

u s t a r e = ustar [i +1] [j] ;
u star w = ustar [i] [j] ;

v s ta r n = vstar [i] [j +1] ;
v s t a r s = vstar [i] [j] ;

i f (i == 1) {
AP = AP − 1 ;
AW = 0 ;

}
i f (i == dimension − 2) {

AP = AP − 1 ;
AE = 0 ;

}
i f (j == 1) {

AP = AP − 1 ;
AS = 0 ;

Kevin Hoopes ME 6434 - Final Project May 9, 2012

}
i f (j == dimension − 2) {

AP = AP − 1 ;
AN = 0 ;

}

double LHS,RHS;

LHS = AP*Pprime P − AE*Pprime E − AW*Pprime W − AN*Pprime N − AS*
Pprime S ;

RHS = −de l t a / d e l t a t * ((u s tar e−
ustar w) + (vstar n−v s t a r s)) ;

Prho sum = Prho sum + pow ((LHS −
RHS) , 2 . 0) ;

}
}

double L2 norm = 0 ;

L2 norm = pow(1 . 0/pow ((dimension −2) , 2 . 0) *Prho sum
, 0 . 5) ;

// cout << L2 norm << end l ;
i f (L2 norm < 1e−5) {

// cout << ”Timestep ” << m << ” : ” << m*
d e l t a t << ” Pprime converged in ” << n
<< ” i t e r a t i o n s . with L2 nrom of ” <<

L2 norm << end l ;
break ;

}

// cout << L2 norm << end l ;

i f (L2 norm > 10 e3) {
cout << ”Divergence det ec t ed on i t e r ” << m

<< ” !” << end l ;
r e tu rn 0 ;

}

p r e s s u r e i t e r a t i o n s++;
}

// co r r e c t u and v

// update u o ld
f o r (i n t i =0; i<dimension ; i++){

f o r (i n t j =0; j<dimension ; j++){

u o ld [i] [j] = u [i] [j] ;

}
}

// update v o ld
f o r (i n t i =0; i<dimension ; i++){

Kevin Hoopes ME 6434 - Final Project May 9, 2012

f o r (i n t j =0; j<dimension ; j++){

v o ld [i] [j] = v [i] [j] ;

}
}

// co r r e c t u
double rho u = 0 ;
double rho v = 0 ;
f o r (i n t i =2; i <= dimension − 2 ; i++){

f o r (i n t j =1; j <= dimension − 2 ; j++){

u [i] [j] = ustar [i] [j] − d e l t a t * calcPgradx (
Pprime , i , j) ;

rho u = rho u + pow(u [i] [j] − u o ld [i] [j
] , 2 . 0) ;

}
}

// co r r e c t v
f o r (i n t i =1; i <= dimension −2; i++){

f o r (i n t j =2; j <= dimension −2; j++){

v [i] [j] = vstar [i] [j] − d e l t a t * calcPgrady (
Pprime , i , j) ;

rho v = rho v + pow(v [i] [j] − v o ld [i] [j
] , 2 . 0) ;

}
}

// check to make sure c on t i nu i t y holds
i n t i = 10 ;
i n t j = 10 ;

i f (m % 1000 == 0) {
// double cont = (u [i] [j]* de l t a+v [i] [j]* de l t a) − (u [i

+1] [j]* de l t a+v [i] [j +1]* de l t a) ;
// cout << ”Cont inut iy check : ” << cont << end l ;
}

// update P

f o r (i n t j =1; j < dimension −1; j++){
f o r (i n t i =1; i < dimension −1; i++) {

P[i] [j] = P[i] [j] + Pprime [i] [j] ;

}
}

Kevin Hoopes ME 6434 - Final Project May 9, 2012

// check stop c r i t e r i a
double L2 norm u , L2 norm v ;
L2 norm u = pow (1 . 0/pow ((dimension−2) , 2 . 0) * rho u , 0 . 5) ;
L2 norm v = pow (1 . 0/pow ((dimension−2) , 2 . 0) * rho v , 0 . 5) ;

L 2 f i l e << m << ” ” << L2 norm u << ” ” << L2 norm v << ” ”
<< p r e s s u r e i t e r a t i o n s << end l ;

i f (L2 norm u < 1e−8 && L2 norm v < 1e−8) {
cout << ” So lu t ion converged to steady s t a t e in ” <<

m << ” t imesteps , c ong r a tu l a t i on s . ” << end l ;

s t r ings t r eam u end f i l ename ;
u end f i l ename << ” r e s u l t s /uend−” << dimension − 2

<< ”−” << d e l t a t << ”−” << RE << ” . txt ” ;
p r in t 2d (u , dimension , u end f i l ename . s t r ()) ;

s t r ings t r eam v end f i l ename ;
v end f i l ename << ” r e s u l t s /vend−” << dimension − 2

<< ”−” << d e l t a t << ”−” << RE << ” . txt ” ;
p r in t 2d (v , dimension , v end f i l ename . s t r ()) ;

// s t r ings t r eam P end f i lename ;
// P end f i lename << ”Pend−” << dimension << ”−” <<

d e l t a t << ”−” << RE << ” . txt ” ;
// p r in t 2d (P, dimension , P end f i lename . s t r ()) ;

L 2 f i l e . c l o s e () ;

break ;
}

i f (m % r ep o r t i n t e r v a l == 0) {
cout << ” t imestep : ” << m << ” Pressure converged in

” << p r e s s u r e i t e r a t i o n s << ” i t e r a t i o n s , u
s o l u t i o n L2 : ” << L2 norm u << end l ;

}

i f (m % wr i t e i n t e r v a l == 0) {
// cout << ”Wrote i t e r : ” << m << ” Pressure

converged in ” << p r e s s u r e i t e r a t i o n s << ”
i t e r a t i o n s , So lu t ion L2 : ” << L2 norm u << end l ;

s t r ings t r eam uf i lename ;
u f i l ename << ” r e s u l t s /u−” << dimension << ”−” <<

d e l t a t << ”−” << RE << ” ” << m << ” . txt ” ;
p r in t 2d (u , dimension , u f i l ename . s t r ()) ;

s t r ings t r eam vf i lename ;
v f i l ename << ” r e s u l t s /v−” << dimension << ”−” <<

d e l t a t << ”−” << RE << ” ” << m << ” . txt ” ;
p r in t 2d (u , dimension , v f i l ename . s t r ()) ;

}

Kevin Hoopes ME 6434 - Final Project May 9, 2012

}

r e tu rn 0 ;
}

	Problem Definition and Setup
	Nondimensionalization of Governing Equations
	Nondimensional Factors
	Nondimensionalization of the Momentum Equation
	Nondimensionalization of the Continuity Equation

	Overview of solution technique
	Discritization of governing equations
	X-Momentum
	X-Momentum Boundaries
	Y-Momentum
	Y-Momentum Boundaries
	Continuity and Pressure corrections
	Pressure Boundaries

	Description of solver
	Results for RE=100
	Trends in Convergence
	Validation
	Compute time

	Results for RE=1000
	Validation
	Maximum Permissible Time Step
	Comparison to RE=100

	Potential Speed Improvements
	Conclusion

